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How to partition a chemical system into its constituent parts is a classic problem of theoretical chemistry. A
formally exact solution has recently been developed, partition theory (PT), based on density functional theory
[Cohen, M. H.; Wasserman, Al. Phys. Chem. 2007, 111, 2229]. PT presents a constrained optimization
problem to which the CarParrinello (CP) method of electronic structure theory is well suited. We propose
here a generalization of the CP method suitable for PT and thereby make way for its practical numerical
implementation. We demonstrate that this CP implementation of PT need not increase the complexity of the
computation of the system’s electronic structure. The scheme provides an exact DFT formulation of, e.g.,
atoms in molecules theory that is amenable to numerical implementation.

. Introduction the Car-Parrinello (CP) method is ide#:'® However, in the
CP method as originally formulated, the Lagrange multipliers

. . . .~ are adjusted at each iteration step. To do so for the reactivit
smaller constituent parts is a classic problem of theoretical J P Y

chemistry! These parts may be acids, bases, sugars monomerspOtential would require at each step computation of a two-point
side chaiﬁs otc E)I'he mar)ll a roxi’mate o’r ?ecis’e solutionssusceptibimy for each part, summing them, and inverting the

’ Co y app ; P ... ~sum, a prohibitively complex task.Accordingly, we introduce
proposed are not reviewed here. At the ultimate level of partition

the general partition problem becomes the “atoms-in-molecules” here two modifications of the CP method. In the first, the
9 ar P . . ; reactivity potential is treated as a dynamical variable in parallel
problem with its own extensive literature which has been

coaently reviewed by Nalewaiski and PArr with the analogous treatment of the expansion parameters of
Ig yl y fth ! ﬁé’?m develobed the Kohn-Sham (KS) wavefunction$,presuming prior knowl-
Inearlier papers, one of the current aut as developed edge of the molecular electron density and ionization potential.
with Wasserman a formally exact procedure for the partition

based on density-functional theory (DFTJhis partition theor In the second, such prior knowledge is not required, and the
(PT) fixes the n)L/JcIei of the partsyin the posiltjions they hoﬁ/j i ground-state properties of the molecule and of its parts emerge

the molecule and imposes the condition that the electron simultaneously as the iteration proceeds.
densities of the parts sum identically to that of the molecule. The paper is organized as follows. The partition theory is

reviewed briefly in section Il. The new, dynamical version of

The average electron numbers of the parts are not rgstrlcted toPT is described in section Il for the case where prior knowledge
integer values. Consequently, the ensemble formulation of DFT of the molecular electron densitys(r) and of the molecular

?fhzergft\ilrigéallr.]ésfLvl?/;fsozigsg;gtigde:‘j%ﬁtein;Thu:tfgﬁr?c%ai?dn chemical potentiay exists. That version is generalized in
P . y . pea section IV to the case where no prior information for the
of a formulation of chemical reactivity theory (CRTiyee of o o
molecule exists; it allows the molecular and partition problems

the inconsistencies arising from derivatives of properties of to be solved simultaneously. We conclude in section V with a

reactants with respect to electron numbers in the original . . ; S
formulation of DFT-based CR¥X A very simple analytic discussion of the computational feasibility of the two methods.

illustration of PT has been worked out in quantitative défail.
Finding the ground states of the parts is a constrained

optimization problem like that of a typical electronic ground- We consider an arbitrary molecule M in its ground state for

state problem with a given nuclear configuration but with the a given atomic configuration. L&k, (r) be the electron density

added constraints that the electron densities of the parts add upand the integeNy = /nu(r) dr be the total number of electrons

to that of the molecule and that their electron numbers add upin the molecule. The corresponding ground-state enExgis,

to the integer electron number of the molecule. In PT, a according to the Hohenberg and Kohn (HK) theofem,

reactivity potential is introduced as a Lagrange multiplier of functional ofn(r), Em[nm(r)], which is minimized by the actual

the density constraint and an internal chemical potential equal ground-state density. We presently assume that we have solved

to the negative of the ionization potential of the molecule as the ground-state molecular problem; i.e., we know the nuclear

that of the number constraint. For such constrained optimizations configuration,ny(r) and the ground-state ener&[nu]. We

also know the chemical potentia{, of the molecule, which is
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rigorous partition of the total charge density into a sum of semi-
positive definite partial densitie,(r)?” The partial densities

do not necessarily integrate to integral numbers of electrons,
i.e., theN, = ffi(r) dr are in general not integers because the

constituent parts interact among themselves. To solve this prob-

lem, we musextendthe definition of the energy functional to

systems with noninteger electron numbers. The correct way of

doing that is by adopting the Perdewarr—Levy—Balduz
(PPLB) ensemble density functional thed§following PPLB

we write N, = po + vo, Wherep, is a semipositie definite
integer and 0< v, <1. The partial energy functiondt, is
then given by the PPLB density functional of the part regarded
as isolated but with its nuclear configuration identical to that
in M,

E, = (1 — vEun, ] + veEqln, 1] 1)

The functionalE, has continuous piecewise linear dependence
on N, in consequence of the discrete convexity of the ground-
state energy of integer bound system8€The partition problem

is then solved by minimizingpr = ¥ «E, with the constraints
u(r) = Sofl(r), Nw = SN The present paper deals with
how this can be done efficiently in practice.

Cohen and Car

GPT[{ np} l{ p(x’V(x}] = EPT[{ np} l{ p(x’V(x}] -
p

S 2y ) yRE) dr = 8y)

a p:p(lvp(l+li V]:]'

ur(y Ny = Ny) + [ Vo(N)(5 () — ny(r)) dr (7)
Here Ept is given explicitly by

Eor= {0 - VB[] + vEl (@)

and the KS form is used fdgq[ny

p
En] = %.Z f (VP (VyP) dr + f V,n, dr + Fng]
P =Py Py T 1 (9)

whereV, is the external potential of the nuclei of partin

their positions in M. In eq 7/{}]’ VR(r), andur are Lagrange
multipliers that impose the constraints{4p), respectively. We
call VR(r) the reactivity potential>=> It acts as an external

According to KS, the molecular density can be represented potential on the electron densify(r) to impose the condition

as ny(r) = Zi:lyNM|1/1i""(r)|2 in terms of single-particle or-
thonormal orbitalsp{v'(r). The functionalEy takes the form

1
Eulmi] =23 S V™)V dr +

SV Ry) ny(r) dr + Flny] (2)

whereVu(r,Rw) is the external potential of the nuclei, aRfhy]

is a universal functional of the density;. The KS construction
allows us to replace the minimization Bf; with respect to the
densitynu(r) with the minimization ofEy with respect to the
wiM(r) subject to orthonormality constraints. For the parts, the
KS prescription can be generalized to nonintegral electron
numbers by defining:>7:8

(r)

p= pa* p(1+1

A (r) = (1 —v)n, (1) + vy

lpP(r)?

1

®)

ny(r) =
i=Tp

Equations 3 require specification of the orthonormal orbitals
yP(r) for the integerp = py and forp = p, + 1 and of the
noninteger occupation number componewrgs Thus, varying
(Pw,ve) is equivalent to varyindN,. The generalized minimiza-
tion problem forEpr with respect to the variableg(r) p = po
andp = p, + 1 andN, is thus subject to the constraints

Sl ) wlr) dr = o, @)
> Ny =Ny (5)
(6)

3 A1) = ny(r)

Using the technique of Lagrange multipliers, this is equivalent
to finding the infimuni® of the functionalGe{{ Np(r)} { Pa,va}]
given by

> ofia(r) = nu(r) and serves as a proxy for the mutual interaction

of the various fragments. We also require that the chemical
potentialur is fixed and equal t@y,*®i.e., the known chemical
potential of the molecule; the corresponding term in eq 7 simply
says that each fragment experiences the same chemical potential.

Note thatE,[np, Pa, val, €9 1, is the exact KS functional of
parta. It has the correct derivative discontinuinities at integer
N, i.e., atvg = 0, 1. Although approximate functionals can be
used for the individual components &, E.[Nny,] andEq[Nnp,+1]
having integer electron numbers, the continuation of such
approximate functionals to a noninteger number should not be
used forE,. Otherwise, a risk of substantial loss of accuracy
could result.

In the conventional CafParrinello (CP) minimization pro-
cedure, imposing the orthonormalization of the'(r) by
calculating the Lagrange multiplieﬁ%’ does not pose particu-
lar difficulties® On the other hand, calculating the reactivity
potential via that methodology is impractical because it would
require calculating an electronic response function (an inverse
susceptibility) each time that the constraint (6) is imposed during
CP iterations. We therefore regard eq 7 as a Legendre
transformation from the variableg4"(r)}, {pw vo}) , cON-
strained by egs 5 and 6, to the variablé®R(r)}, {Paw, va},
VR(r)) of which only the{y?(r)} are constrained (by eq 4).
Optimization of the PT functionaGer{({yP(r)}, {Pe Vel
Vr(r))] in eq 7 supplemented only by the orthonormality con-
straints isequivalentto the optimization of the same functional
supplemented by the constraints {4$). We use the phrase
optimization ofGpr for the search of its stationary point because
the latter is a saddle point, minimal with respect to théut
maximal with respect t&g, as discussed further in section Ill.

An initial choice of{p,} must be made before iteration on
the values of they? andv, can start. They can be chosen via
conventional chemical arguments, e.g., the anticipated formal
oxidation states of the parts. For a given initial choice, no
minimum may be found as the, vary. Instead, an infimum
could be found with respect to one or motgat the end points
0 or 1 of their ranges. If found for, * 1 , thatp, has to be
increased by one and the search resumed, If0 , thatp, is
to be decreased by one and the search resumed.
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Next we discuss a strategy to optimiZ&-t based on
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yP subspace. SimilarlyGer is convex with respect to the,,

dynamical equations of motion which constitutes a generaliza- as its Hessian in the, subspace is just the hardness matrix

tion of conventional CP theoA?13 In particular, we consider
in the next section the case in which the molecular density
nu(r) is known, and the case in which the molecular density is

1« defined in (5), which is positive definite. On the other hand,
asVr is an external potentiaGpt is concave with respect to it,
soI'y, must be negative to enforce steepastenttoward the

unknown is considered in the subsequent section. In the latterstationary point, a maximum in the subspace containiggnd

case, the dynamical optimization is used to genesatailta-
neouslythe density of the parts and of the molecule.

[ll. Dynamical Optimization of the PT Functional;
Molecular Density Known

Dynamical minimization of the KS energy functional was

introduced in (12). This approach can be naturally extended to

the PT functionalGpr, the derivatives of which with respect to
the variables {(r)}, {Pw va}, VR(r)) can be easily calcu-

lated. We discuss here the particularly simple case of optimiza-
tion by steepest descent/ascent (SAD) dynamics. Generalization
to more efficient optimization schemes, such as damped mole-

cular dynamic® and, even better, conjugate gradient dyna-

mics1720 is straightforward and will be discussed in a future

paper on the numerical implementation of the PT methodology.
Given a generalized functionaF [{.4}] depending on a set

of fields{.4}, SAD optimization amounts to solving numerically

the following set of ordinary first-order differential equations

in a fictitious time variable:

80T
02, (10)

In eq 10T is a member of a set of friction coefficients that
control the SAD dynamic response of the variabl{eg}.
Numerically, eq 10 is solved by finite differences in time starting
from an initial guesg.4} (t = 0). The trajectory generated by
eq 10 approaches a stationary pdint}° at sufficiently large
t wheno 7 /6{ 4} — 0, signaling, for example, that the system
approaches a saddle point@flocated on the separatrix of the
basin of the initial guess. The stationary pofnt}° does not
depend on the parametdE}, which are free to be chosen to
speed up convergence.

Application of the SAD optimization procedure to the
partition problem leads to the following equations:

Lapf(r) = —[(1 = v){ (Hks + VR)YI(r) —
> AP0, — [Vl (Hks + VRIWI() —
J

APy, 41 (11)
]

Ly Ve(r) = =[> fiu(r) — ny ()] 12)

T, v, =—[En, 1] —ENn, ] — ] = —[ug —uy] (13)

E[n] = En] + fVa(r) ny(r) dr (14)
Equation 11 resembles the usual equation for SAD minimization
of the KS functional in conventional CP thedd/Hgg is the

KS Hamiltonian of parto. depending on the set of orbitals
{P} with p = p, or p= p. + 1. However, the presence Wk

in Gpr, augmenting the nuclear electrostatic potential in its
dependence o ,fi,, forces an interesting change. &t is
minimal with respect to thepf, I';,, must be positive so that
integrating eq 11 over time forces the steepestcentn the

orthonormaly?. The Hessian oGpr there is simply

0*Gpr

V) OVelr) .

whereyr is a positive-definite susceptibility defined in ref 5 as

XrR— ZX(I (16)
o
Xo = (1 - Vot)%pOl + V(xXpqul (17)
_on, 18
Xp B 6V6Xt ( )

Vext Can be any external potentialg for example. Eacly, is
positive definite, and so therefore gyrg and yr via (17) and
(16). Gpr is therefore concave with respect Y, as stated
above. The stationary point is a saddle point, and the search
for it is an optimization in the general sense, not a minimization
of Gpr. Moreover, the stationary point is unique becaGseis
everywhere concave with respect Vg, and theER[n,] have
unigue minima and by conjecti@r¢heir ensemble possesses
discrete convexity for giveg. One can illustrate that unique-
ness by integrating eqs 413 over successive small time
intervals and observing that the resulting increments always
move the system toward the sole stationary point.

Finally, we note that in eq 13, the chemical poten,u'ﬁlof
o in the presence oV is taken as the difference in the total
energiesER. If the density functionals employed in actual
computations were exact, this difference would be identical to
the corresponding KS HOMO eigenvalue fgr+ 1. However,
for small systems like the parts, inaccuracies in the usual
approximate density functionals can cause the KS HOMO to
differ significantly from the total energy difference, which, in
fact, gives a better approximation than the KS HOMO to the
ionization energy. Nevertheless, of the two choices;t@)rthe
KS HOMO in the presence &fzr must be used. The asymptotic
behavior of the density of each partis controlled by the KS
HOMO eigenvalue of, + 1 in the presence ofr. Similarly,
the asymptotic behavior afy is controlled by the KS HOMO
eigenvalue of M. The constraint (6), as imposed through the
evolution of Vg via eq 12, enforces the equality of the KS
HOMO eigenvalue for each paa with that of M. Conse-
quently, it is the KS HOMO eigenvalues of the parts that must
be used for the? in eq 13, and not the difference in total ener-
gies Ey ., — E, and similarly for M, when approximate
density functionals are used. However, the usual care should
be taken to avoid the introduction of multiple minima by such
approximations.

The Lagrange multipliers that impose orbital orthonormality
in (11) are calculated in the usual w&3For each part,, eq
11 amounts to computing two different SAD trajectories, one
for the set of orbital{y*} and one for the set of orbitals
{y "}, If the integer numberg, do not vary during SAD
minimization, i.e., only the fractional occupationg change,
egs 11-13 solve completely the optimization problem of PT.
A special problem arises when the numbegsincrease or
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decrease by a unit in the course of SAD minimization, as
discussed above. This situation can be dealt with by adfling
supplementary orbitalgy_, ;.. to the orbitalsp, , that are
used to define the starting point of the SAD trajectory. The
supplementary orbitals do not enter in the definition of the
electron densityny,(r), on which the KS HamiltoniarH}g
depends. They evolve as virtual orbitals; i.e., they follow an
SD trajectory determined by the KS Hamiltoniaf}s + Vi

Cohen and Car

atoms in molecules theory (AIMT), now subsumed within PT,

it is reasonable to expect further conceptual advances from PT.
Remaining at issue, then, is whether quantitative results can be
obtained with PT, for example values of the reactivities defined
in ref 5. In the present paper, we have worked out modifications
of the standard CP formalism for the casgsandgum, known

or unknown. Thus whether PT can be made quantitative
devolves to the computational complexity of these procedures.

and are subject to the constraint of orthogonality to the occupied ~ There areA parts and each part has two components. Treating

orbitals wipzlp and to the constraint of orthonormality among
themselves. Whenever, during a trajectoryp ancreases by
unity, the virtual orbital corresponding to the lowest unoccupied

the parts as having the same ditéor the first caseny known,
the computational complexity of the partition scales ASDif
the presence of ¢/does not significantly delocalize thgl,

KS eigenvalue becomes an occupied orbital and begins toPecause computinyr and thev, does not add significant

contribute to the electronic density(r). At the same time the

computational complexity. The complexity of getting and

set of virtual orbitals is reduced by a unit. Correspondingly, the{Rq} by an ordinary CP computation scales ANE. The
whenever ap decreases by unity, the set of virtual orbitals fatio of the two complexities is2°2. With A significant for
increases by a unit. This procedure entails derivative disconti- large systems, carrying out the partition does not add signifi-
nuities in the SAD trajectory. The discontinuities in the cantly to the computational complexity of the original study of
quantities themselves are however small because when an empt)- This conclusion does not change if the partition and finding
orbital starts to become occupied or a filled orbital starts to ™ and{R.} are carried out simultaneously, the second case.

empty the resulting change of the electron density is very small.

IV. Dynamical Optimization of the PT Functional;
Molecular Density Unknown

Absent PT, obtaining the molecular density for a given
nuclear configuratior{ R,} via the CP method using SD

dynamics requires solving the standard CP equation by iteration

rwiM’]}:\A = —Hygsyi + z li’}/l,l/)JM (19)
]
with the result that at the stationary point,
= e (20)

We conclude that PT is computationally feasible for all
systems to which the ordinary CP method can be usefully
applied and in which the presence \¢t does not delocalize
.. When that condition is violated, one must carry ouh (2
1) computations of complexityAN)3, severely limiting the size
of the systems which can be embraced by PT. Determining
whether delocalization is introduced b is thus a pressing

‘issue for PT. The nearsightedness corféégsuggests, however,

thatVg probably does not delocalize thg in the general case.
There is an alternative to the PPLB form Bf of eql, a

continuous interpolation dE,[ny] of eq 9 betweemp, andp,

+ 1.232425Using such a form foE, would reduce the number

of y; by a factor of~2, but at the cost of significant loss of

accuracy in the density functional. Added to the existing

inaccuracies of the density functionals for the integer number

where the symbols in eqs 19 and 20 take on their standardis the inaccuracy of the very complex mapping of the PPLB

meaningsem in particular being the KS HOMO eigenvalue. In
eq 20, we deliberately use the KS HOMO of M instead of the
ground state energy differengg(Nmv) — Em(Nm — 1) in accord

ensemble DF into a functional of a single density with
noninteger number. For now, PPLB is preferred.

with the above discussion of the consequences of inaccuracy Acknowledgment. We thank Paul Ayers for his close,

in the density functionalEy[ny]. The densityny has the
standard form

M
M= 1"l (21)

Equations 19 and 1113 are to be solved in parallel by iteration,
using at a given stage of iteration of eqs—1113 appropriate
intermediate values afy from eq 21 anduy from eq 20 as the
values ofny anduy in egs 1+13. How close the iteration of
eqs 11-13 has to track the evolving value @f} andny remains

to be investigated. When iteration of both equations is complete,
ground-state values for both the parts and the whole will have

been found.
So far we have assumed that the nuclear coordifd®g}
are fixed. It would be straightforward to allow for nuclear

relaxation by extending the optimization procedure also to the

nuclear coordinates as done in the standard CP apptéath.

V. Discussion

Inref 5 PT has already proved its worth in providing a sound
foundation for chemical reactivity theory. At issue is whether,
in regard to CRT, computation of the reactivities defined in ref
5 is feasible. Also, given the immense effort poured into the

careful, and constructively critical reading of this article.
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